已知单调函数f(x)满足f(x+y)=f(x)+f(y),且f(3)=log23,定义域为R.(Ⅰ)求证f(x)

已知单调函数f(x)满足f(x+y)=f(x)+f(y),且f(3)=log23,定义域为R.

(Ⅰ)求证f(x)为奇函数;

(Ⅱ)若f(x)满足对任意实数x,f(k·3x)+f(3x-9x-2)<0恒成立,求k的取值范围.

答案

分析:(Ⅰ)为了证明f(x)为奇函数,只须证明对x∈R,f(-x)=-f(x)成立.

解:观察f(x+y)=f(x)+f(y),令x=0,有f(0)=0,再令y=-x,则f(0)=f(x)+f(-x).

    即f(x)+f(-x)=0.f(-x)=-f(x).

    故f(x)为奇函数.

(Ⅱ)由于f(x)是奇函数,且f(k·3x)+f(3x-9x-2)<0恒成立.∴f(k·3x)<-f(3x-9x-2),

    即f(k·3x)<f(9x-3x+2).①

   为了确定k的取值范围,需要进一步判断f(x)是单调递增或单调递减,

    由于f(3)=log23>0,而f(0)=0,那么f(3)>f(0),因为f(x)是单调函数,故此函数为单调增函数,则由①得,

9x-3x+2>k·3x,

    即(3x)2-(k+1)·3x+2>0恒成立.②

    由于3x>0,使②成立的条件为k+1≤0,或其判断别式Δ<0,

    当k+1≤0,则k≤-1;

    当Δ<0,即(k+1)2-4·2<0,

    解得-1-2<k<-1+2.

    综上所述,k<-1+2.

相关题目

下列知识的结构中正确的是: A.比较串联和并联的不同:串
下列知识的结构中正确的是: A.比较串联和并联的不同:串联并联 连接方式逐个顺次连接并列连接 有无节点无有 电流路径只有一条多条 开关个数一
某四棱锥的三视图如图所示,则最长的一条侧棱的长度是 A.
某四棱锥的三视图如图所示,则最长的一条侧棱的长度是 A.      B.     C.      D.
She felt _____ of having asked such a silly question when the audience couldn't
She felt _____ of having asked such a silly question when the audience couldn't help laughing. A. guilty  B. crazy C. miserable  D. ashamed
下列各种生殖方式中,能够增加变异、提高后代对环境适应
下列各种生殖方式中,能够增加变异、提高后代对环境适应能力的是 A.营养繁殖        B.卵式生殖         C.出芽生殖      D.分裂生殖
如图,,要使,则需要补充一个条件,这个条件可以是 .(
如图,,要使,则需要补充一个条件,这个条件可以是 .(只需填写一个)  
义和团的传单中写道:“挑铁路,把线砍,旋在毁坏大轮船
义和团的传单中写道:“挑铁路,把线砍,旋在毁坏大轮船”。对此的正确认识是:        A.是对当时社会存在的正确反映 B.是一种落后于社会存
Dr, Robert Bell went to New York , bought some books ___ his daughter. A. visiti
Dr, Robert Bell went to New York , bought some books ___ his daughter. A. visiting    B. to visit     C. and visited    D, visited
— Many people are worried that so many college graduates each year can’t fin
— Many people are worried that so many college graduates each year can’t find a job. — There is no need to worry about it as the government is now making every _______ to provide more jobs. A.

最新题目