(12分)飞机在2km的高空以360km/h的速度沿水平航线匀速飞行,飞机在地面上观察者的正上方空投一包裹(取g=10m/s2,不计空气阻力)
⑴试比较飞行员和地面观察者所见的包裹的运动轨迹;
⑵包裹落地处离地面观察者多远?离飞机的水平距离多大?
⑶求包裹着地时的速度大小和方向。
(12分)飞机在2km的高空以360km/h的速度沿水平航线匀速飞行,飞机在地面上观察者的正上方空投一包裹(取g=10m/s2,不计空气阻力)
⑴试比较飞行员和地面观察者所见的包裹的运动轨迹;
⑵包裹落地处离地面观察者多远?离飞机的水平距离多大?
⑶求包裹着地时的速度大小和方向。
⑴飞机上的飞行员以正在飞行的飞机为参照物,从飞机上投下去的包裹由于惯性,在水平方向上仍以360km/h的速度沿原来的方向飞行,但由于离开了飞机,在竖直方向上同时进行自由落体运动,所以飞机上的飞行员只是看到包裹在飞机的正下方下落,包裹的轨迹是竖直直线;地面上的观察者是以地面为参照物的,他看见包裹做平抛运动,包裹的轨迹为抛物线。
⑵抛体在空中的时间取决于竖直方向的运动,即t==20s。
包裹在完成竖直方向2km运动的同时,在水平方向的位移是:x=v0t=2000m,即包裹落地位置距观察者的水平距离为2000m。
空中的包裹在水平方向与飞机是同方向同速度的运动,即水平方向上它们的运动情况完全相同,所以,落地时,包裹与飞机的水平距离为零。
⑶包裹着地时,对地面速度可分解为水平和竖直两个分速度:
v0=100m/s,vy=gt=200m/s v==100m/s。
tanθ===2,所以θ=arctan2。