设数列{an}的前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,且a2=﹣2,则a7=( )
A.16 B.32 C.64 D.128
设数列{an}的前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,且a2=﹣2,则a7=( )
A.16 B.32 C.64 D.128
C【考点】等差数列的前n项和.
【分析】由题意得Sn+2+Sn+1=2Sn,得an+2=﹣2an+1,从而得到{an}从第二项起是公比为﹣2的等比数列,由此能求出结果.
【解答】解:∵数列{an}的前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,且a2=﹣2,
∴由题意得Sn+2+Sn+1=2Sn,得an+2+an+1+an+1=0,即an+2=﹣2an+1,
∴{an}从第二项起是公比为﹣2的等比数列,
∴.
故选:C.