如图,在正三棱柱ABC-A1B1C1中,D是BC的中点,AA1=AB=a.
(1)求证:AD⊥B1D;
(2)求证:A1C∥平面AB1D;
(3)求三棱锥C-AB1D的体积.
如图,在正三棱柱ABC-A1B1C1中,D是BC的中点,AA1=AB=a.
(1)求证:AD⊥B1D;
(2)求证:A1C∥平面AB1D;
(3)求三棱锥C-AB1D的体积.
[解析] (1)证明:∵ABC-A1B1C1是正三棱柱,
∴BB1⊥平面ABC,
∵AD⊂平面ABC.∴AD⊥BB1.
又∵△ABC是正三角形,D是BC的中点,∴AD⊥BC.
又∵BC∩BB1=B,
∴AD⊥平面B1BCC1.
又∵B1D⊂平面B1BCC1,
∴AD⊥B1D.
(2)证明:连接A1B,设A1B∩AB1=E,连接DE.
∵AA1=AB,∴四边形A1ABB1是正方形,
∴E是A1B的中点,
又∵D是BC的中点,
∴DE∥A1C.
∵DE⊂平面AB1D,A1C⊄平面AB1D,
∴A1C∥平面AB1D.
(3)解:VC-AB1D=VB1-ADC=S△ADC·|BB1|=
a3.