(1)求证数列{an}是等比数列;
(2)设数列{an}的公比为f(t),作数列{bn},使b1=1, bn=f()(n=2,3,4,…),求bn.
(1)求证数列{an}是等比数列;
(2)设数列{an}的公比为f(t),作数列{bn},使b1=1, bn=f()(n=2,3,4,…),求bn.
(1)证明:
由S1=a1=1,S2=a1+a2=1+a2得,3t(1+a2)-(2t+3)=3t.
解得,a2=∴
又
①-②得,3tan-(2t+3)an-1=0,
∴=
(n=2,3,4,…).
所以{an}是以1为首项,为公比的等比数列.
(2)解:
∵f(t)=∴bn=f()=
+bn-1.
∴{bn}是以1为首项,为公差的等差数列,
∴bn=1+(n-1)=
n+
.