(1)求证数列{an}是等比数列;
(2)设数列{an}的公比为f(t),作数列{bn},使b1=1, bn=f(
)(n=2,3,4,…),求bn.
(1)求证数列{an}是等比数列;
(2)设数列{an}的公比为f(t),作数列{bn},使b1=1, bn=f(
)(n=2,3,4,…),求bn.
(1)证明:
由S1=a1=1,S2=a1+a2=1+a2得,3t(1+a2)-(2t+3)=3t.
解得,a2=
∴![]()
又
①-②得,3tan-(2t+3)an-1=0,
∴
=
(n=2,3,4,…).
所以{an}是以1为首项,
为公比的等比数列.
(2)解:
∵f(t)=∴bn=f(
)=
+bn-1.
∴{bn}是以1为首项,
为公差的等差数列,
∴bn=1+
(n-1)=
n+
.