如图,已知在Rt△ABC,AB=AC,∠BAC=90°,过A的任一条直线AN,BD⊥AN于D,CE⊥AN于E。
⑴求证:DE=BD-CE
如图,已知在Rt△ABC,AB=AC,∠BAC=90°,过A的任一条直线AN,BD⊥AN于D,CE⊥AN于E。
⑴求证:DE=BD-CE
(1)证明:∵∠BAC=90°,BD⊥AN,
∴∠BAD
+∠ABD=90°,∠BAD+∠CAE=90°
∴∠ ABD=∠CAE
∵BD⊥AN,CE⊥AN,
∴∠BDA=∠AEC=90°,
在△ABD与△CAE中
∠BDA=∠AEC
∠ ABD=∠CAE
AB=AC
∴△ABD≌△CAE(AAS),
∴BD=AE,AD=CE,
∵DE=AE-AD,
∴DE=BD-CE
(2)如图所示,存在关系式为:DE=DB+CE
证明:∵BD⊥AN,CE⊥AN,
∴∠BDA=∠CEA=90°
∴∠1+∠3=90°
∵∠BAC=90°,
∴∠2+∠1=180°-∠BAC=180°-90°=90°
∴∠2=∠3