(本题满分12分 )
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
,遇到红灯时停留的时间都是2min.
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)求这名学生在上学路上因遇到红灯停留的总时间
的分布列及期望.
(本题满分12分 )
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
,遇到红灯时停留的时间都是2min.
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)求这名学生在上学路上因遇到红灯停留的总时间
的分布列及期望.
解:(1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,因为事件A等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A的概率为
.
(2)由题意,可得
可能取的值为0,2,4,6,8(单位:min).
事件“
”等价于事件“该学生在路上遇到
次红灯”(
0,1,2,3,4),
∴
,
∴即
的分布列是
|
| 0 | 2 | 4 | 6 | 8 |
|
|
|
|
|
|
|
∴
的期望是
.