(Ⅰ)求满足f(x)=g(x)的x值的集合;
(Ⅱ)求函数
的单调递减区间.
(Ⅰ)求满足f(x)=g(x)的x值的集合;
(Ⅱ)求函数
的单调递减区间.
解:(Ⅰ)f(x)=(sinx+cosx)2=[
sin(x+
)]2=[g(x)]2
由f(x)=g(x),得g(x)=0,或g(x)=1
∴
sin(x+
)=0,或
sin(x+
)=1
∵
,∴![]()
∴x+
=0,或x+
=
,或x+
=![]()
x=-
或x=0或x=![]()
所求x值的集合为{-
,0,
}
(Ⅱ)由(Ⅰ)知,
sin(x+
)(x≠
)
解不等式2kπ+
≤x+
<2kπ+
,k∈Z,得2kπ+
≤x≤2kπ+![]()
∵-
≤x≤
且x≠
,∴
≤x≤![]()
∴函数
的单调递减区间为[
,
].