如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ =________.
如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ =________.
或
【解析】
分析:分两种情形分别求解:①如图1中,当AQ=PQ,∠QPB=90°时,②当AQ=PQ,∠PQB=90°时;
详解:①如图1中,当AQ=PQ,∠QPB=90°时,设AQ=PQ=x,
∵PQ∥AC,
∴△BPQ∽△BCA,
∴,
∴,
∴x=,
∴AQ=.
②当AQ=PQ,∠PQB=90°时,如图2,设AQ=PQ=y.
∵△BQP∽△BCA,
∴,
∴,
∴y=.
综上所述,满足条件的AQ的值为或
.
点睛:本题考查勾股定理、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.