如图, 直线y=x与抛物线y=
x2-4交于A、B两点, 线段AB的垂直平分线与直线y=-5交于Q点.
(1)求点Q的坐标;
(2)当P为抛物线上位于线段AB下方
(含A、B)的动点时, 求ΔOPQ面积的最大值.
如图, 直线y=x与抛物线y=
x2-4交于A、B两点, 线段AB的垂直平分线与直线y=-5交于Q点.
(1)求点Q的坐标;
(2)当P为抛物线上位于线段AB下方
(含A、B)的动点时, 求ΔOPQ面积的最大值.
【解】(1) 解方程组
即A(-4,-2),B(8,4), 从而AB的中点为M(2,1).由kAB==,直线AB的垂直平分线方程
y-1=(x-2). 令y=-5, 得x=5, ∴Q(5,-5).
(2) 直线OQ的方程为x+y=0, 设P(x, x2-4).∵点P到直线OQ的距离
d==
,
,∴SΔOPQ=
=
.
∵P为抛物线上位于线段AB下方的点, 且P不在直线OQ上, ∴-4≤x<4-4或4
-4<x≤8.
∵函数y=x2+8x-32在区间[-4,8] 上单调递增, ∴当x=8时, ΔOPQ的面积取到最大值30.