数列{an}的前n项和为Sn,a1=1,a2=2,an+2-an=1+
(-1)n(n∈N+),则S100= .
数列{an}的前n项和为Sn,a1=1,a2=2,an+2-an=1+
(-1)n(n∈N+),则S100= .
由an+2-an=1+(-1)n知
a2k+2-a2k=2,a2k+1-a2k-1=0,
∴a1=a3=a5=…=a2n-1=1,
数列{a2k}是等差数列,a2k=2k.
∴S100=(a1+a3+a5+…+a99)+(a2+a4+a6+…+a100)
=50+(2+4+6+…+100)=50+=2 600.
答案:2 600