如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为( )
A. B.
C.
D.
如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为( )
A. B.
C.
D.
D【考点】相似三角形的判定与性质.
【分析】证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到=
,借助相似三角形的性质即可解决问题.
【解答】解:∵S△BDE:S△CDE=1:3,
∴BE:EC=1:3;
∴BE:BC=1:4;
∵DE∥AC,
∴△DOE∽△AOC,
∴=
,
∴S△DOE:S△AOC==
,
故选D.
【点评】本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.