如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R.一个质量为m的物体(可以看作质点)从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动.已知P点与圆弧的圆心O等高,物体与轨道AB间的动摩擦因数为μ.求:
(1)物体做往返运动的整个过程中在AB轨道上通过的总路程;
(2)最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力;
(3)为使物体能顺利到达圆弧轨道的最高点D,释放点距B点的距离L′应满足什么条件.
如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R.一个质量为m的物体(可以看作质点)从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动.已知P点与圆弧的圆心O等高,物体与轨道AB间的动摩擦因数为μ.求:
(1)物体做往返运动的整个过程中在AB轨道上通过的总路程;
(2)最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力;
(3)为使物体能顺利到达圆弧轨道的最高点D,释放点距B点的距离L′应满足什么条件.
解析:(1)因为摩擦始终对物体做负功,所以物体最终在圆心角为2θ的圆弧上往复运动.
对整体过程由动能定理得:mgR·cos θ-μmgcos θ·s=0,所以总路程为s=.
(2)对B→E过程mgR(1-cos θ)=mv
①
FN-mg=②
由①②得对轨道压力:FN=(3-2cos θ)mg.
(3)设物体刚好到D点,则mg=③
对全过程由动能定理得:mgL′sin θ-μmgcos θ·L′-mgR(1+cos θ)=mv
④
由③④得应满足条件:L′=·R.
答案:(1) (2)(3-2cos θ)mg (3)
·R