设数列{an}满足a1=a,an+1=an2+a1,.
(1)当a∈(-∞,-2)时,求证:M;(2)当a∈(0,
]时,求证:a∈M;
(3)当a∈(,+∞)时,判断元素a与集合M的关系,并证明你的结论.
设数列{an}满足a1=a,an+1=an2+a1,.
(1)当a∈(-∞,-2)时,求证:M;(2)当a∈(0,
]时,求证:a∈M;
(3)当a∈(,+∞)时,判断元素a与集合M的关系,并证明你的结论.
证明:(1)如果,则
,
. ………………………………………2分
(2) 当 时,
(
).
事实上,〔〕当时,
.
设时成立(
为某整数),
则〔〕对,
.
由归纳假设,对任意n∈N*,|an|≤<2,所以a∈M.…………………………6分
(3) 当时,
.证明如下:
对于任意,
,且
.
对于任意,
,
则.
所以,.
当时,
,即
,因此
.…10分