解:如图,设与直线AB平行且与抛物线相切的直线方程为x+y-b=0.将它与抛物线方程y2=4x联立,得方程y2=4(b-y),
即y2+4y-4b=0,由Δ=42-4(-4b)=0,b=-1,
故切线为x+y+1=0,求得切点C(1,-2).
因直线x+y+1=0与x+y-2=0的距离d=
∴|AB|=4
即当C点为(1,-2)时,S△ABC的最大值为6