数列{an}中,an>0,且{anan+1}是公比为q(q>0)的等比数列,满足anan+1+an+1an+2>an+2an+3(n∈N*),则公比q的取值范围是( )
A.0<q< B.0<q<
C.0<q< D.0<q<
数列{an}中,an>0,且{anan+1}是公比为q(q>0)的等比数列,满足anan+1+an+1an+2>an+2an+3(n∈N*),则公比q的取值范围是( )
A.0<q< B.0<q<
C.0<q< D.0<q<
解析:∵{anan+1}的公比为q,
∴an+1an+2=qanan+1,an+2an+3=q2anan+1.
∵an>0,∴q>0且1+q>q2,
解得0<q<.
答案:B