如果对任意实数x,y,都有f(x+y)=f(x)·f(y),且f(1)=2,
(1)求f(2),f(3),f(4)的值.
(2)求+
+
+…+
+
+
+
的值.
如果对任意实数x,y,都有f(x+y)=f(x)·f(y),且f(1)=2,
(1)求f(2),f(3),f(4)的值.
(2)求+
+
+…+
+
+
+
的值.
解 (1)因为对任意实数x,y,
都有f(x+y)=f(x)·f(y),且f(1)=2,
所以f(2)=f(1+1)=f(1)·f(1)=22=4,
f(3)=f(2+1)=f(2)·f(1)=23=8,
f(4)=f(3+1)=f(3)·f(1)=24=16.
(2)由(1)知=2,
=2,
=2,…,
=2.
故原式=2×1 008=2 016.