设函数f(x)=ax+sinx+
cosx的图象上存在两条切线垂直,则a的值是 .
设函数f(x)=ax+sinx+
cosx的图象上存在两条切线垂直,则a的值是 .
0.【解析】f(x)=ax+sin(x+),f ′(x)=a+cos(x+
)由题设可知存在x1,x2使(a+cos(x1+
))(a+cos(x2+
))=-1,不妨设-cos(x1+
)<-cos(x2+
),则(a+cos(x1+
))(a+cos(x2+
))=-1<0得,-cos(x1+
)<a<-cos(x2+
),所以-1=(a+cos(x1+
))(a+cos(x2+
))≥(a+1)(a-1)=a2-1.故a=0.