如图7,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于E、F,作BH⊥AF于点H,分别交AC、CD于点G、P,连结GE、GF.
(1)求证:△OAE ≌△OBG.
(2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由.
(3)试求:的值(结果保留根号).
![]() |
如图7,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于E、F,作BH⊥AF于点H,分别交AC、CD于点G、P,连结GE、GF.
(1)求证:△OAE ≌△OBG.
(2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由.
(3)试求:的值(结果保留根号).
![]() |
.解:(1)证明:
∵四边形ABCD是正方形
∴OA=OB,∠AOE=∠BOG=90°
∵BH⊥AF
∴∠AHG=90°
∴∠GAH+∠AGH=90°=∠OBG+∠AGH
∴∠GAH=∠OBG
∴△OAE≌△OBG.
(2)四边形BFGE是菱形,理由如下:
∵∠GAH=∠BAH,AH=AH, ∠AHG=∠AHB
∴△AHG≌△AHB
∴GH=BH
∴AF是线段BG的垂直平分线
∴EG=EB,FG=FB
∵∠BEF=∠BAE+∠ABE=,∠BFE=90°-∠BAF=67.5°
∴∠BEF=∠BFE
∴EB=FB
∴EG=EB=FB=FG
∴四边形BFGE是菱形
(3)设OA=OB=OC=a,菱形GEBF的边长为b.
∵四边形BFGE是菱形,
∴GF∥OB, ∴∠CGF=∠COB=90°,
∴∠GFC=∠GCF=45°,
∴CG=GF=b
(也可由△OAE≌△OBG得OG=OE=a-b,OC-CG=a-b,得CG=b)
∴OG=OE=a-b,在Rt△GOE中,由勾股定理可得:,求得
∴AC=,AG=AC-CG=
∵PC∥AB, ∴△CGP∽△AGB,
∴,
由(1)△OAE≌△OBG得AE=GB,
∴