如图,牧童在A处放牛,其家在B处,A,B到河岸CD的距离分别为AC,BD,且AC=BD,若A到河岸CD的中点的距离为500 m.
(1)牧童从A处把牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?在图中作出该处,并说明理由;
(2)最短路程是多少?
如图,牧童在A处放牛,其家在B处,A,B到河岸CD的距离分别为AC,BD,且AC=BD,若A到河岸CD的中点的距离为500 m.
(1)牧童从A处把牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?在图中作出该处,并说明理由;
(2)最短路程是多少?
解:(1)作法:如图作点A关于CD的对称点A′;
连接A′B交CD于点M.则点M即为所求的点.
证明:在CD上任取一点M′,连接AM′,A′M′,BM′,AM,
因为直线CD是A,A′的对称轴,M,M′在CD上,
所以AM=A′M,AM′=A′M′,所以AM+BM=A′M+BM=A′B,
在△A′M′B中,因为A′M′+BM′>A′B,
所以AM′+BM′=A′M′+BM′>AM+BM,即AM+BM最小.
(2)由(1)可得AM=A′M,A′C=AC=BD,所以△A′CM≌△BDM,
即A′M=BM,CM=DM,所以M为CD的中点,且A′B=2AM,
因为AM=500 m,所以A′B=AM+BM=2AM=1 000 m.即最短路程为1 000 m.