

解:(1)∵m·n=1,
即
sin
cos
+cos2
=1,
即
sin
+
c
os
+
=1,
∴sin(
+
)=
.
∴cos(
-x)=cos(x-
)
=-cos(x+
)=-[1-2sin2(
+
)]
=2·(
)2-1=-
.
(2)∵(2a-c)cos B=bcos C,
由正弦定理得(2sin
A-sin C)cos B=sin Bcos C.
∴2sin Acos B-cos Bsin C=sin Bcos C,
∴2sin Acos B=sin(B+C),
∵A+B+C=π,∴si
n(B+C)=sin A,且sin A
≠0,
∴cos B=
,B=
,∴
0<A
<
.
∴
<
+
<
,
<sin(
+
)<1.
又∵f(x)=m·n=sin(
+
)+
,
∴f(A)=sin(
+
)+
,
故函数f(A)的取值范围是(1,
).