(1)P(η<3.5};
(2)P(η<-4);
(3)P(η≥2);(4)P(|η|<3).
(1)P(η<3.5};
(2)P(η<-4);
(3)P(η≥2);(4)P(|η|<3).
分析:首先,应将一般正态分布N(1.5,2)转化成标准正态分布,利用结论:若η—N(μ,σ2),则由ξ=—N(0,1)知:P(η<x==Φ(
),其后再转化为非负标准正态分布情况的表达式,通过查表获得结果.
解:(1)P(η<3.5==Φ()=Φ(1)=0.841 3;
(2)P(η<-4==Φ()=Φ(-2.75)
=1-Φ(2.75)=0.003 0;
(3)P(η≥2)=1-P(η<2==1-Φ()
=1-Φ(0.25)=0.401 3;
(4)P(|η|<3)=P(-3<η<3)
=Φ()-Φ(
)
=Φ(0.75)-Φ(-2.25)
=0.773 4-[1-Φ(2.25)]
=0.773 4-(1-0.987 8)=0.761 2.