函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点的个数为( )
A.1 B.2 C.3 D.4
函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点的个数为( )
A.1 B.2 C.3 D.4
A
【解析】
试题分析:根据当f'(x)>0时函数f(x)单调递增,f'(x)<0时f(x)单调递减,可从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,然后得到答案.
解:从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,
根据极值点的定义可知在(a,b)内只有一个极小值点.
故选:A.
考点:利用导数研究函数的单调性.