如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)
(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.
(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B2重合.已知m>0,n>0,求m,n的值.
如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)
(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.
(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B2重合.已知m>0,n>0,求m,n的值.
【分析】(1)把y=0代入二次函数的解析式中,求得一元二次方程的解便可得A、B两点的坐标,再根据函数图象不在x轴下方的x的取值范围得y≥0时x的取值范围;
(2)根据题意写出B1,B2的坐标,再由对称轴方程列出n的方程,求得n,进而求得m的值.
【解答】解:(1)令y=0,则﹣,
解得,x1=﹣2,x2=6,
∴A(﹣2,0),B(6,0),
由函数图象得,当y≥0时,﹣2≤x≤6;
(2)由题意得,B1(6﹣n,m),B2(﹣n,m),
函数图象的对称轴为直线,
∵点B1,B2在二次函数图象上且纵坐标相同,
∴,
∴n=1,
∴,
∴m,n的值分别为,1.
【点评】本题主要考查了二次函数的图象与性质,求函数与坐标轴的交点坐标,由函数图象求出不等式的解集,平移的性质,难度不大,关键是正确运用函数的性质解题.