如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上的一点,AE=5,点P在长方形ABCD的一边上,要使△AEP是等腰三角形,则△AEP的底边长为 .
如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上的一点,AE=5,点P在长方形ABCD的一边上,要使△AEP是等腰三角形,则△AEP的底边长为 .
5或5或4
.
【考点】LB:矩形的性质;KI:等腰三角形的判定.
【分析】分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE=AE=5
即可;
②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出等边AP即可;
③当PA=PE时,底边AE=5;即可得出结论.
【解答】解:如图所示:
①当AP=AE=5时,
∵∠BAD=90°,
∴△AEP是等腰直角三角形,
∴底边PE=AE=5
;
②当PE=AE=5时,
∵BE=AB﹣AE=8﹣5=3,∠B=90°,
∴PB==4,
∴底边AP==
=4
;
③当PA=PE时,底边AE=5;
综上所述:等腰三角形AEP的对边长为5或4
或5;
故答案为:5或5或4