如图,□ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N。
(1)(4分)求证:四边形CMAN是平行四边形。
(2)(4分)已知DE=4,FN=3,求BN的长。
如图,□ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N。
(1)(4分)求证:四边形CMAN是平行四边形。
(2)(4分)已知DE=4,FN=3,求BN的长。
【考点】平行四边形的判定与性质,全等三角形的判定与性质,勾股定理.
【分析】(1)通过AE⊥BD,CF⊥BD证明AE∥CF,再由四边形ABCD是平行四边形得到AB∥CD,由两组对边分别平行的四边形是平行四边形可证得四边形CMAN是平行四边形;
(2)先证明两三角形全等得DE=BF=4,再由勾股定理得BN=5.
【解答】⑴证明:∵AE⊥BD CF⊥BD
∴AE∥CF
又∵四边形ABCD是平行四边形
∴AB∥CD
∴四边形CMAN是平行四边形 (4分)
⑵由⑴知四边形CMAN是平行四边形
∴CM=AN.
又∵四边形ABCD是平行四边形
∴ AB=CD,∠MDE=∠NBF.
∴AB-AN=CD-CM,即DM=BN.
在△MDE和∠NBF中
∠MDE=∠NBF
∠DEM=∠BFN=90°
DM=BN
∴△MDE≌∠NBF
∴DE=BF=4,(2分)
由勾股定理得BN==
=5(4分).
答:BN的长为5.
【点评】本题主要考查了平行四边形的判定及其性质,全等三角形的判定与性质,勾股定理;灵活运用判定、性质及定理来分析、判断、推理或解答是解题的关键.