如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,,E,F分别是BC

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,EF分别是BC, PC的中点.

(Ⅰ)证明:AEPD;

(Ⅱ)若HPD上的动点,EH与平面PAD所成最大角的正切值为,求二面角EAFC的余弦值.

答案

(Ⅰ)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.

因为      EBC的中点,所以AEBC.

     又   BCAD,因此AEAD.

因为PA⊥平面ABCDAE平面ABCD,所以PAAE.

而    PA平面PADAD平面PADPAAD=A

所以  AE⊥平面PAD,又PD平面PAD.

所以 AE⊥PD.(Ⅱ)解:设AB=2,H为PD上任意一点,连接AHEH.

由(Ⅰ)知   AE⊥平面PAD

则∠EHAEH与平面PAD所成的角.

在Rt△EAH中,AE=

所以  当AH最短时,∠EHA最大,

即     当AHPD时,∠EHA最大.

此时    tan∠EHA=

因此   AH=.又AD=2,所以∠ADH=45°,

所以    PA=2.

解法一:因为   PA⊥平面ABCDPA平面PAC

        所以   平面PAC⊥平面ABCD.

        过EEOACO,则EO⊥平面PAC

        过OOSAFS,连接ES,则∠ESO为二面角E-AF-C的平面角,

       在Rt△AOE中,EO=AE·sin30°=AO=AE·cos30°=,

       又F是PC的中点,在Rt△ASO中,SO=AO·sin45°=,

       又  

       在Rt△ESO中,cos∠ESO=

       即所求二面角的余弦值为

解法二:由(Ⅰ)知AEADAP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又E、F分别为BC、PC的中点,所以

A(0,0,0),B(,-1,0),C(,1,0),

D(0,2,0),P(0,0,2),E(,0,0),F(),

所以    

设平面AEF的一法向量为m

因此

因为  BDAC,BDPA,PAAC=A

所以   BD⊥平面AFC

故     为平面AFC的一法向量.

又     =(-),

所以  cos<, >=.

因为   二面角E-AF-C为锐角,

所以所求二面角的余弦值为

相关题目

如图10-1-3所示,固定在水平面上的气缸内,用活塞封闭一定
如图10-1-3所示,固定在水平面上的气缸内,用活塞封闭一定质量的理想气体,活塞与气缸间无摩擦且和周围环境没有热交换.当用一个水平恒力F向外拉动
不久前,美国加州Miramar海军航空站安装了一台250 kW的MCFC型燃
不久前,美国加州Miramar海军航空站安装了一台250 kW的MCFC型燃料电池,该电池可同时供应电和蒸气,其工作温度为600~700 ℃,所用燃料为H2,电解质为熔
下列有关ATP的叙述,正确的是(     ) A.线粒体是蓝藻
下列有关ATP的叙述,正确的是(     ) A.线粒体是蓝藻细胞产生ATP的主要场所   B.光合作用产物中的化学能全部来自热能 C.ATP分子由1个腺嘌呤
下表是某同学对细胞周期不同表示方法的总结,你认为错误
下表是某同学对细胞周期不同表示方法的总结,你认为错误的选项是(    )
129. The illness had left her feeling tired and______. A. strong        
129. The illness had left her feeling tired and______. A. strong             B. happy             C. weak             D. Hungry
    已知函数,函数在x=1处的切线与直线垂直. (1)求实数a
    已知函数,函数在x=1处的切线与直线垂直. (1)求实数a的值; (2)若函数存在单调递减区间,求实数的取值范围; (3)设是函数的两个极值点
端午节是中国人民中一个十分盛行的隆重节日,人们有在每
端午节是中国人民中一个十分盛行的隆重节日,人们有在每年的农历五月初五划龙舟、吃粽子、喝雄黄酒的风俗,以此来纪念爱国诗人屈原。珍视这一
用分子原子知识解释下列现象错误的是A.氢气和液氢都可做燃
用分子原子知识解释下列现象错误的是A.氢气和液氢都可做燃料 —— 相同物质的分子,其化学性质相同B.“墙内开花墙外香”   —— 分子在不断的运

最新题目