焦点分别为F1,F2的椭圆过点M(2,1),抛物线的准线过椭圆C的左焦

焦点分别为F1,F2的椭圆过点M(2,1),抛物线的准线过椭圆C的左焦点.

(Ⅰ)求椭圆C的方程;

(Ⅱ)不过M的动直线l交椭圆C于A、B两点,若=0,求证:直线l恒过定点,并求出该定点的坐标.

答案

考点

直线与圆锥曲线的关系;椭圆的标准方程.

专题

压轴题;圆锥曲线的定义、性质与方程.

分析:

(Ⅰ)由抛物线方程写出其准线方程,从而求出椭圆焦点坐标,把点M的坐标代入椭圆方程后,结合a2=b2+c2可求椭圆方程;

(Ⅱ)分直线l垂直于坐标轴和不垂直坐标轴两种情况进行讨论,直线垂直坐标轴时,把直线方程代入椭圆方程求出A,B的坐标,由=0解出m的值,直线不垂直坐标轴时,设出直线方程的斜截式,和椭圆方程联立后由判别式大于0得到直线斜率和在y轴上的截距满足的关系式,再由=0把直线的截距用斜率表示,代回直线方程后由线系方程可得直线恒过定点.

解答:

(Ⅰ)解:由2p=,∴p=,∴抛物线的准线方程为

∴椭圆方程可化为,又椭圆过点M(2,1),

,则a4﹣8a2+12=0,

∵a2>3,解得:a2=6.

∴所求椭圆的方程为

(Ⅱ)证明:①若直线l⊥x轴,直线l可设为x=m(m≠2),则直线l与椭圆交于

,得

即3m2﹣8m+4=0.

解得:m=2(舍)或

故直线l的方程为

②若直线l与x轴不垂直,可设直线l的方程为y=kx+n.

直线l与椭圆交于A(x1,y1),B(x2,y2).

(1+2k2)x2+4knx+2n2﹣6=0.

由△>0,得:(4kn)2﹣4(1+2k2)(2n2﹣6)>0,即6k2﹣n2+3>0.

由根与系数关系得:

得:(x1﹣2)(x2﹣2)+(y1﹣1)(y2﹣1)=0,

即x1x2﹣2(x1+x2)+y1y2﹣(y1+y2)+5=0,

又y1=kx1+n,y2=kx2+n,

∴4k2+8kn+(3n+1)(n﹣1)=0,即(2k+3n+1)(2k+n﹣1)=0.

或n=﹣2k+1.

或n=﹣2k+1满足△>0.

∴直线l为或y=kx﹣2k+1=k(x﹣2)+1.

由于直线l不过M,∴直线y=kx﹣2k+1=k(x﹣2)+1不合题意.

∴直线l为

综合①②,直线l为为

故直线l恒过定点

点评:

本题考查了椭圆标准方程的求法,考查了直线和圆锥曲线的位置关系,考查了分类讨论的数学思想,证明直线l恒过定点时,综合考查了向量知识、直线系方程及学生的运算能力,此题属难题.

相关题目

— Excuse me. When can we play badminton at the court?  —Not until it ____
— Excuse me. When can we play badminton at the court?  —Not until it _______ next week. A. repairs                B. will repair          C. will be repaired     
基因工程等生物高科技的应用,引发了许多关于科技与伦理
基因工程等生物高科技的应用,引发了许多关于科技与伦理的争论。有人欢呼,科学技术的发展将改变一切;有人惊呼,它将引发道德危机。对此,我
读图,判断29~30题:      甲               乙 29
读图,判断29~30题:      甲               乙 29.图甲表示的地形应为图乙中的(   ) A.AB剖面       B.CD剖面       C.EF剖面   
若,函数的图像可能是                         
若,函数的图像可能是                                      (    )
.下列说法正确的是( ) A.不可能事件发生的概率为0  
.下列说法正确的是( ) A.不可能事件发生的概率为0   B.随机事件发生的概率为 C.概率很小的事件不可能发生  D.投掷一枚质地均匀的硬币100
人体的内环境是指(    ) A.组织液      B.血液    
人体的内环境是指(    ) A.组织液      B.血液      C.细胞内液      D.细胞外液
18世纪末,英格兰人约翰·马卡丹设计了新的筑路方法,用碎
18世纪末,英格兰人约翰·马卡丹设计了新的筑路方法,用碎石铺路,路中偏高,便于排水,路面平坦宽阔。后来,这种路便取其设计人的姓,取名为“
在真核生物中,DNA主要位于         (    )     A.
在真核生物中,DNA主要位于         (    )     A.细胞质    B.细胞核      C.核糖体    D.线粒体

最新题目