某厂使用两种零件A、B装配两种产品P、Q,该厂的生产能力是月产P产品最多有2500件,月产Q产品最多有1200件;而且组装一件P产品要4个A、2个B,组装一件Q产品要6个A、8个B,该厂在某个月能用的A零件最多14000个;B零件最多12000个. 已知P产品每件利润1000元,Q产品每件2000元,欲使月利润最大,需要组装P、Q产品各多少件?最大利润多少万元.
某厂使用两种零件A、B装配两种产品P、Q,该厂的生产能力是月产P产品最多有2500件,月产Q产品最多有1200件;而且组装一件P产品要4个A、2个B,组装一件Q产品要6个A、8个B,该厂在某个月能用的A零件最多14000个;B零件最多12000个. 已知P产品每件利润1000元,Q产品每件2000元,欲使月利润最大,需要组装P、Q产品各多少件?最大利润多少万元.
分别生产P、Q产品2000件、1000件,最大利润400万元.
设分别生产P、Q产品x件、y件,则有
设利润S=1000x+2000y=1000(x+2y)
要使利润S最大,只需求x+2y的最大值.
x+2y=m(2x+3y)+n(x+4y)=x(2m+n)+y(3m+4n)
∴ ∴
有x+2y=(2x+3y)+
(x+4y)≤
×7000+
×6000.
当且仅当解得
时取等号,此时最大利润Smax=1000(x+2y)=4000000=400(万元).
另外此题可运用“线性规划模型”解决.