在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.
(1)求抛物线C的标准方程;
(2)设直线l是抛物线的准线,求证:以AB为直径的圆与准线l相切.
在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.
(1)求抛物线C的标准方程;
(2)设直线l是抛物线的准线,求证:以AB为直径的圆与准线l相切.
解:(1)设抛物线y2=2px(p>0),将点(2,2)代入得p=1.
∴y2=2x为所求抛物线的方程.
(2)证明:设lAB的方程为:x=ty+,代入y2=2x得:y2-2ty-1=0,设AB的中点为M(x0,y0),则y0=t,x0=
.
∴点M到准线l的距离d=x0+=
+
=1+t2.又AB=2x0+p=1+2t2+1=2+2t2,∴d=
AB,故以AB为直径的圆与准线l相切.