如图,AB为⊙O的直径,AM和BN是它的两条切线,E为⊙O的半圆弧上一动点(不与A、B重合),过点E的直线分别交射线AM、BN于D、C两点,且CB=CE.
1.求证:CD为⊙O的切线
2.若tan∠BAC=,求 的值
如图,AB为⊙O的直径,AM和BN是它的两条切线,E为⊙O的半圆弧上一动点(不与A、B重合),过点E的直线分别交射线AM、BN于D、C两点,且CB=CE.
1.求证:CD为⊙O的切线
2.若tan∠BAC=,求 的值
1.证明:连接OE. …………………………………1分
∵OB=OE,
∴∠OBE=∠OEB.
∵BC=EC,
∴∠CBE=∠CEB. ……………………………………………2分
∴∠OBC=∠OEC.
∵BC为⊙O的切线,
∴∠OEC=∠OBC=90°, ……………………………………………3分
∵OE为半径,∴CD为⊙O的切线.……………………………………………4分
2.延长BE交AM于点G,连接AE,过点D作DT⊥BC于点T.
因为DA、DC、CB为⊙O的切线,
∴DA=DE,CB=CE.
在Rt△ABC中,因为tan∠BAC=,令AB=2x,则BC=x.
∴CE=BC=x. ……………………………………………5分
令AD=DE=a,
则在Rt△DTC中,CT=CB-AD=x-a,DC=CE+DE=x+a,DT=AB=2x,
∵DT2=DC2-CT2,
∴(2x)2=(x+a)2-(x-a)2. ……………………………………………6分
解之得,x=a. ……………………………………………7分
∵AB为直径,
∴∠AEG=90°.
∵AD=ED,
∴AD=ED=DG=a.
∴AG=2a. ……………………………………………8分
因为AD、BC为⊙O的切线,AB为直径,
∴AG∥BC.
所以△AHG∽△CHB.
∴==. ……………………………………………9分
∴=1. ……………………………………………10分
解析:切线的判定定理是圆中常考点,三角形相似是求三角形中线段长度的常用方法。