
图2-2-7
图2-2-7
思路分析:
由已知条件可以证明四边形ABEF是正方形,且边长为2,则正方形面积为2.而△ABD的面积为正方形面积的一半,所以,只需证明S四边形APQB=S△ABD,即证S△BPD=S△BPQ,即证DQ∥PB.
因为BP⊥AE,所以,只需证DQ⊥AE.
证明:
∵AE、BF为互相垂直的两条直径,垂足O为圆心,∴AE、BF互相平分、垂直且相等.
∴四边形ABEF是正方形.
∴∠ACB=∠AEF=45°,
即∠DCQ=∠QED.
∴D、Q、E、C四点共圆.连结CE、DQ,则∠DCE+∠DQE=180°.
∵AE为⊙O的直径,
∴∠DCE=90°,∠DQE=90°.
∵∠FOE=90°,进而DQ∥BF,
∴S△BPQ=S△BPD.
∴S△ABP+S△BPQ=S△ABP+S△BPD,即S四边形ABQP=S△ABD.
∵⊙O的半径为1,∴正方形边长为,即AB=AF=
.
∴S四边形ABQP=S△ABD=AB·AF=1.
方法归纳
当题目的结论直接证明较繁或无法证明时,可根据条件先证明某四点共圆,再利用圆的性质可使问题得以解决,这种方法常称之为“作辅助圆”方法.