已知三棱柱ABC﹣A1B1C1,侧棱AA1垂直于底面ABC,AB=BC=AA1=4,D为BC的中点,
(1)若E为棱CC1的中点,求证:DE⊥A1C;
(2)若E为棱CC1上异于端点的任意一点,设CE与平面ADE所成角为α,求满足 时,求CE的长.
已知三棱柱ABC﹣A1B1C1,侧棱AA1垂直于底面ABC,AB=BC=AA1=4,D为BC的中点,
(1)若E为棱CC1的中点,求证:DE⊥A1C;
(2)若E为棱CC1上异于端点的任意一点,设CE与平面ADE所成角为α,求满足 时,求CE的长.
解:(1)以B为原点,BC,BA,BB1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,……2分
∵AB=BC=AA1=4,D为BC的中点,E为棱CC1的中点,
∴D(2,0,0),E(4,0,2),A1(0,4,4),C(4,0,0),
=(2,0,2),
=(4,-4,-4),
=0+8﹣8=0,
∴DE⊥A1C. ………5分
(2)设E(4,0,t),0≤t≤4, =(0,0,t),A(0,4,0),
=(2,-4,0),
=(4,-4,t),
设平面ADE的法向量=(x,y,z),
则,
,取x=2,得=(2,1,﹣
), ………8分
设CE与平面ADE所成角为α,满足sinα=,∴
=
=
,
解得t=3或t=﹣3(舍),∴CE=3 ………12分