(05年湖北卷理)(14分)
已知不等式
为大于2的整数,
表示不超过
的最大整数. 设数列
的各项为正,且满足![]()
(Ⅰ)证明![]()
(Ⅱ)猜测数列
是否有极限?如果有,写出极限的值(不必证明);
(Ⅲ)试确定一个正整数N,使得当
时,对任意b>0,都有![]()
(05年湖北卷理)(14分)
已知不等式
为大于2的整数,
表示不超过
的最大整数. 设数列
的各项为正,且满足![]()
(Ⅰ)证明![]()
(Ⅱ)猜测数列
是否有极限?如果有,写出极限的值(不必证明);
(Ⅲ)试确定一个正整数N,使得当
时,对任意b>0,都有![]()
解析:(Ⅰ)证法1:∵当![]()
即
于是有 ![]()
所有不等式两边相加可得 ![]()
由已知不等式知,当n≥3时有,![]()
∵![]()
证法2:设
,首先利用数学归纳法证不等式
![]()
(i)当n=3时, 由 
知不等式成立.
(ii)假设当n=k(k≥3)时,不等式成立,即![]()
则

即当n=k+1时,不等式也成立.
由(i)、(ii)知,![]()
又由已知不等式得 
(Ⅱ)有极限,且![]()
(Ⅲ)∵![]()
则有![]()
故取N=1024,可使当n>N时,都有![]()