设各项均为正数的数列{an}满足.
(Ⅰ)若求a3,a4,并猜想a2008的值(不需证明);
(Ⅱ)若对n≥2恒成立,求a2的值.
设各项均为正数的数列{an}满足.
(Ⅰ)若求a3,a4,并猜想a2008的值(不需证明);
(Ⅱ)若对n≥2恒成立,求a2的值.
解:(I)因a1=2, a2=2-2,故
由此有,
,
,
,……
从而猜想an的通项为
,
所以
(Ⅱ)令xn=log2an.则,故只需求x2的值。
设Sn表示xn的前n项和,则a1a2…an=,由2
≤a1a2…an<4得
≤Sn=x1+x2+…+xn<2(n≥2).
因上式对n=2成立,可得≤x1+x2,又由a1=2,得x1=1,故x2≥
.
由于a1=2,(n∈N*),得
(n∈N*),即
,
因此数列{xn+1+2xn}是首项为x2+2,公比为的等比数列,故
xn+1+2xn=(x2+2) (n∈N*).
将上式对n求和得
Sn+1-x1+2Sn=(x2+2)(1++…+
)=(x2+2)(2-
)(n≥2).
因Sn<2,Sn+1<2(n≥2)且x1=1,故
(x2+2)(2-)<5(n≥2).
因此2x2-1<(n≥2).
下证x2≤,若不然,假设x2>
,则由上式知,不等式
2n-1<
对n≥2恒成立,但这是不可能的,因此x2≤.
又x2≥,故x2=
,所以a2=2
=
.