a,b,c为实数,且a=b+c+1.证明:两个一元二次方程x2+x+b=0,x2+ax+c=0中至少

a,b,c为实数,且a=b+c+1.证明:两个一元二次方程x2+x+b=0,x2+ax+c=0中至少有一个方程有两个不相等的实数根.

答案

假设两个方程都没有两个不等的实数根,则

Δ1=1-4b≤0,Δ2=a2-4c≤0,∴Δ12=1-4b+a2-4c≤0.

∵a=b+c+1,∴b+c=a-1.∴1-4(a-1)+a2≤0,

即a2-4a+5≤0.但是a2-4a+5=(a-2)2+1>0,故矛盾.

所以假设不成立,原命题正确,即两个方程中至少有一个方程有两个不相等的实数根.


解析:

证明  假设两个方程都没有两个不等的实数根,则

Δ1=1-4b≤0,Δ2=a2-4c≤0,∴Δ12=1-4b+a2-4c≤0.

∵a=b+c+1,∴b+c=a-1.∴1-4(a-1)+a2≤0,

即a2-4a+5≤0.但是a2-4a+5=(a-2)2+1>0,故矛盾.

所以假设不成立,原命题正确,即两个方程中至少有一个方程有两个不相等的实数根.

相关题目

如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等
如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是( ) A.    B.    C.    D.
       Learn to relax. Overwork is the main reason why so many students f
       Learn to relax. Overwork is the main reason why so many students feel tired and stressed(紧张). Cut down some of the jobs you need to do each day so that you can only focus on the mo
In recent years, especially during the 1960s, there was much discussion about
In recent years, especially during the 1960s, there was much discussion about “the brain drain(排干,流失),” which dealt with the problem of students and learned people who left their o
天安门城楼的焰火未平息,一曲优美而“另类”的《国家》
天安门城楼的焰火未平息,一曲优美而“另类”的《国家》余间未消——“一 玉口中国,一瓦顶成家,都说国很大,其实一个家;一心装满国,一手撑起
A、B、C、D是短周期元素形成的四种气体单质,甲、乙、丙、
A、B、C、D是短周期元素形成的四种气体单质,甲、乙、丙、丁是化合物,其中化合物乙是离子晶体,D元素的原子最外层电子数是次外层的3倍,C的氧化
如图,在三棱柱ABC﹣A1B1C1中,侧面ABB1A1, ACC1A1均为正方形,A
如图,在三棱柱ABC﹣A1B1C1中,侧面ABB1A1, ACC1A1均为正方形,AB=AC=1,∠BAC=90°,点D 是棱B1C1的中点. (1)求证:A1D⊥平面BB1C1C; (2)求证:AB1∥平面A1D
有下列物理量:(1)质量,(2)速度,(3)位移,(4)力,(5)加速度,(6)路程,(
有下列物理量:(1)质量,(2)速度,(3)位移,(4)力,(5)加速度,(6)路程,(7)密度,(8)功.其中不能称为向量的有____________个(    )A.1个              B.2个   
 – I’m getting fatter and fatter. – I think you need to _____ and take m
 – I’m getting fatter and fatter. – I think you need to _____ and take more _____.        A. have healthy diet; exercises             B. on diet; exercising        C.

最新题目