(1)已知一元二次方程x2+px+q=0(p2-4q≥0)的两根为x1、x2;求证:x1+x2=-p,x1●x2= q。
(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(-1,-1),设线段AB的长为d,当p为何值时,d 2取得最小值,并求出最小值。
(1)已知一元二次方程x2+px+q=0(p2-4q≥0)的两根为x1、x2;求证:x1+x2=-p,x1●x2= q。
(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(-1,-1),设线段AB的长为d,当p为何值时,d 2取得最小值,并求出最小值。
(1)证明:a=1,b=p,c=q
∴⊿= p2-4q
∴x= 即x1=
,x2=
∴x1+x2= +
=-p,x1●x2=
●
= q
(2)把代入(-1,-1)得p-q=2,q=p-2
设抛物线y=x2+px+q与x轴交于A、B的坐标分别为(x1,0)、(x2,0)
∴由d= 可得d 2=(x1-x2)2=(x1+x2)2-4 x1●x2= p2-4q= p2-4p+8=(p-2)2+4
当p=2时,d 2 的最小值是4