(本小题满分12分)
|


(Ⅰ)求椭圆的方程;
(Ⅱ)过点(4,0)且不与坐标轴垂直的直线
交椭圆
于
、
两点,设点
关于
轴的对称点为
.
(ⅰ)求证:直线过
轴上一定点,并求出此定点坐标;
(ⅱ)求△面积的取值范围.
(本小题满分12分)
|
(Ⅰ)求椭圆的方程;
(Ⅱ)过点(4,0)且不与坐标轴垂直的直线
交椭圆
于
、
两点,设点
关于
轴的对称点为
.
(ⅰ)求证:直线过
轴上一定点,并求出此定点坐标;
(ⅱ)求△面积的取值范围.
解:(Ⅰ)因为椭圆的一个焦点是(1,0),所以半焦距
=1.
因为椭圆两个焦点与短轴的一个端点构成等边三角形.
所以,解得
所以椭圆的标准方程为
. ……………4分
(Ⅱ)(i)设直线
:
与
联立并消去
得:
.
记,
,
,
. 由A关于
轴的对称点为
,得
,根据题设条件设定点为
(
,0),得
,即
.所以
即定点(1 , 0). ……………8分
(ii)由(i)中判别式,解得
. 可知直线
过定点
(1,0).
所以 得
, 令
记
,得
,当
时,
.
在
上为增函数. 所以
,
得.故△OA1B的面积取值范围是
. ……………12分