如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是 .
如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是 .
4.8 .
【考点】切线的性质;垂线段最短;勾股定理的逆定理.
【分析】设EF的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形PC+PD=EF,由三角形的三边关系知,PC+PD>CD;只有当点P在CD上时,PC+PD=EF有最小值为CD的长,即当点P在直角三角形ABC的斜边AB的高CD上时,EF=CD有最小值,由直角三角形的面积公式知,此时CD=BCAC÷AB,进而求出即可.
【解答】解:如图,设EF的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;
∵AB=10,AC=8,BC=6,
∴∠ACB=90°,PC+PD=EF,
∴PC+PD>CD,
∵当点P在直角三角形ABC的斜边AB的高CD上时,EF=CD有最小值,
∴CD=BCAC÷AB=4.8.
故答案为:4.8.
【点评】此题主要考查了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解,得出CD=BCAC÷AB是解题关键.