如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)求PB和平面PAD所成的角的大小;
(2)证明AE⊥平面PCD;
(3)求二面角A-PD-C的正弦值.
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)求PB和平面PAD所成的角的大小;
(2)证明AE⊥平面PCD;
(3)求二面角A-PD-C的正弦值.
(1)解 在四棱锥P-ABCD中,
因PA⊥底面ABCD,AB⊂平面ABCD,
故PA⊥AB.又AB⊥AD,PA∩CD=A,
从而AB⊥平面PAD,
故PB在平面PAD内的射影为PA,
从而∠APB为PB和平面PAD所成的角.
在Rt△PAB中,AB=PA,故∠APB=45°.
所以PB和平面PAD所成的角的大小为45°.
(2)证明 在四棱锥P-ABCD中,
因PA⊥底面ABCD,CD⊂平面ABCD,
故CD⊥PA.由条件CD⊥AC,PA∩AC=A,
∴CD⊥平面PAC.
又AE⊂平面PAC,∴AE⊥CD.
由PA=AB=BC,∠ABC=60°,可得AC=PA.
∵E是PC的中点,∴AE⊥PC.
又PC∩CD=C,综上得AE⊥平面PCD.
(3)解 过点E作EM⊥PD,垂足为M,连接AM,如图所示.
由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,
则AM⊥PD.
因此∠AME是二面角A-PD-C的平面角.
由已知,可得∠CAD=30°.
设AC=a,可得
所以二面角A-PD-C的正弦值为
.