如图,AB为⊙O的直径,C,G是⊙O上两点,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F,且BC平分∠ABD.
(1)求证:CD是⊙O的切线;
(2)若=
,求∠E的度数;
(3)连结AD,在(2)的条件下,若CD=2,求AD的长.
如图,AB为⊙O的直径,C,G是⊙O上两点,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F,且BC平分∠ABD.
(1)求证:CD是⊙O的切线;
(2)若=
,求∠E的度数;
(3)连结AD,在(2)的条件下,若CD=2,求AD的长.
证明:(1)连接OC,
∵OC=OB,BC平分∠ABD,
∴∠OCB=∠OBC,∠OBC=∠DBC,
∴∠DBC=∠OCB,
∴OC∥BD,
∴∠BDC=∠ECO,
∵CD⊥BD,
∴∠BDC=90°,
∴∠ECO=90°,
∵OC是⊙O的半径,
∴CD是⊙O的切线;
(2)由(1)知,
OC∥BD,
∴∠OCF=∠DBF,∠COF=∠BDF,
∴△OCF∽△DBD,
∴,
∵=
,
∴,
∵OC∥BD,
∴△EOC∽△EDB,
∴,
∴,
设OE=2a,EB=3a,
∴OB=a,
∴OC=a,
∵∠OCE=90°,OC=OE,
∴∠E=30°;
(3)∵∠E=30°,∠BDE=90°,BC平分∠DBE,
∴∠EBD=60°,∠OBC=∠DBC=30°,
∵CD=2,
∴BC=4,BD=6,
∵,
∴OC=4,
作DM⊥AB于点M,
∴∠DBM=90°,
∵BD=6,∠DBM=60°,
∴BM=3,DM=3,
∵OC=4,
∴AB=8,
∴AM=5,
∵∠DMA=90°,DM=3,
∴AD==
.