如图,平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,若四面体A′﹣BCD顶点在同一个球面上,则该球的体积为( )
A. B.3π C.
D.2π
如图,平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,若四面体A′﹣BCD顶点在同一个球面上,则该球的体积为( )
A. B.3π C.
D.2π
A【考点】球内接多面体;球的体积和表面积.
【专题】计算题;压轴题.
【分析】说明折叠后几何体的特征,求出三棱锥的外接球的半径,然后求出球的体积.
【解答】解:由题意平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,若四面体A′﹣BCD顶点在同一个球面上,可知A′B⊥A′C,所以BC 是外接球的直径,所以BC=
,球的半径为:
;所以球的体积为:
=
.
故选A
【点评】本题是基础题,考查折叠问题,三棱锥的外接球的体积的求法,考查计算能力,正确球的外接球的半径是解题的关键.