秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,f(x)=anxn+an﹣1xn﹣1+…+a1x+a0改写成如下形式f(x)=(…((anx+an﹣1)x+an﹣2)x+…a1)x+a0.至今仍是比较先进的算法,特别是在计算机程序应用上,比英国数学家取得的成就早800多年.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为5,2,则输出v的值为( )
A.130 B.120 C.110 D.100
秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,f(x)=anxn+an﹣1xn﹣1+…+a1x+a0改写成如下形式f(x)=(…((anx+an﹣1)x+an﹣2)x+…a1)x+a0.至今仍是比较先进的算法,特别是在计算机程序应用上,比英国数学家取得的成就早800多年.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为5,2,则输出v的值为( )
A.130 B.120 C.110 D.100
A【考点】程序框图.
【分析】由题意,模拟程序的运行,依次写出每次循环得到的i,v的值,当i=﹣1时,不满足条件i≥0,跳出循环,输出v的值为130.
【解答】解:初始值n=5,x=2,程序运行过程如下表所示:
v=1,i=4
满足条件i≥0,v=1×2+4=6,i=3
满足条件i≥0,v=6×2+3=15,i=2
满足条件i≥0,v=15×2+2=32,i=1
满足条件i≥0,v=32×2+1=65,i=0
满足条件i≥0,v=65×2+0=130,i=﹣1
不满足条件i≥0,退出循环,输出v的值为130.
故选:A.
【点评】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的i,v的值是解题的关键,属于基础题.