四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD是矩形,AB=2,AD=3,PA=,点E为棱CD上一点,则三棱锥E﹣PAB的体积为 .
四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD是矩形,AB=2,AD=3,PA=,点E为棱CD上一点,则三棱锥E﹣PAB的体积为 .
.
【考点】棱柱、棱锥、棱台的体积.
【分析】由PA⊥平面ABCD可得VE﹣PAB=VP﹣ABE=.
【解答】解:∵底面ABCD是矩形,E在CD上,
∴S△ABE==
=3.
∵PA⊥底面ABCD,
∴VE﹣PAB=VP﹣ABE==
.
故答案为:.