已知:如图,AB=AC,BD^AC,CE^AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.
证明:∵BD⊥AC,CE⊥AB
∴∠ADB=∠AEC=90°
在△ABD和△ACE中
∠ADB=∠AEC
∠A=∠A
AB=AC
∴△ABD≌△ACE(AAS)
∴AD=AE
∵AB=AC
∴AB-AE=AC-AD即AB=AC