顶点在原点,经过圆C:x2+y2-2x+2y=0的圆心且准线与x轴垂直的抛物线方程为( )
A.y2=-2x B.y2=2x
C.y=x2 D.y=-
x2
顶点在原点,经过圆C:x2+y2-2x+2y=0的圆心且准线与x轴垂直的抛物线方程为( )
A.y2=-2x B.y2=2x
C.y=x2 D.y=-
x2
B.因为圆C:x2+y2-2x+2y=0的圆心是(1,-
),抛物线的顶点在原点,焦点在x轴上,且经过点(1,-
),设标准方程为y2=2px,因为点(1,-
)在抛物线上,所以(-
)2=2p,
所以p=1,所以所求抛物线方程为y2=2x,故选B.