设a≥b>0,求证:3a3+2b3≥3a2b+2ab2.
【证明】3a3+2b3-(3a2b+2ab2)=3a2(a-b)+2b2(b-a)=(3a2-2b2)(a-b).
因为a≥b>0,故a-b≥0,3a2-2b2>2a2-2b2=2(a+b)(a-b)≥0,
所以(3a2-2b2)(a-b)≥0,即3a3+2b3≥3a2b+2ab2.