设F1、F2分别是双曲线的左、右焦点,以F1F2为直径的圆与双曲线C在第一象限的交点为P,若双曲线的离心率为5,则cos∠PF1F2=( )
A. B.
C.
D.
设F1、F2分别是双曲线的左、右焦点,以F1F2为直径的圆与双曲线C在第一象限的交点为P,若双曲线的离心率为5,则cos∠PF1F2=( )
A. B.
C.
D.
C【考点】双曲线的简单性质.
【分析】设|PF1|=m,|PF2|=n,由双曲线的定义知m﹣n=2a,由△PF1F2为直角三角形,知m2+n2=4c2,由双曲线的离心率为5,c=5a,由此能求出结果.
【解答】解:设|PF1|=m,|PF2|=n,
则由双曲线的定义知m﹣n=2a,①
∵△PF1F2为直角三角形,
∴m2+n2=4c2,②
∵双曲线的离心率为5,
∴,即c=5a,
把①和②联立方程组,
解得mn=2b2=2(c2﹣a2)=48a2,
解方程组,得m=8a,n=6a,
∴cos∠PF1F2==
=
=
.
故选C.