如图,在等边△ABC中,D、E分别是AB、AC上的点,且AD=CE,则∠BCD+∠CBE

如图,在等边ABC中,DE分别是ABAC上的点,且AD=CE,则BCD+CBE=      度.

 

答案

60 度.

【考点】等边三角形的性质;全等三角形的判定与性质.

【分析】根据等边三角形的性质,得出各角相等各边相等,已知AD=CE,利用SAS判定ADC≌△CEB,从而得出ACD=CBE,所以BCD+CBE=BCD+ACD=ACB=60°

【解答】解:∵△ABC是等边三角形

∴∠A=ACB=60°AC=BC

AD=CE

∴△ADC≌△CEB

∴∠ACD=CBE

∴∠BCD+CBE=BCD+ACD=ACB=60°

故答案为60

【点评】此题考查了等边三角形的性质及全等三角形的判定方法,常用的判定方法有SSSSASAASHL等.

相关题目

下列事实不能用勒夏特利原理来解释的是(   )       
下列事实不能用勒夏特利原理来解释的是(   )                         A.用排饱和食盐水的方法收集氯气           B.合成氨工
新民主主义革命是“新式的特殊的资产阶级民主革命”,它
新民主主义革命是“新式的特殊的资产阶级民主革命”,它的基本特点有   ①它有新的革命性质即社会主义革命的性质 ②它有新的领导阶级即无产阶
   A few months ago the potato was considered an enemy in the obesity battle
   A few months ago the potato was considered an enemy in the obesity battle but a new study shows the food isn’t that bad after all. In June, researchers from Harvard University found that ea
已知双曲线的离心率为2,若抛物线的焦点到双曲线的渐近线
已知双曲线的离心率为2,若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为                     ()    A.      B.    C.  
For quite        students, their teacher’s advice is more important tha
For quite        students, their teacher’s advice is more important than      of their parents. A.few; one        B.a few; that          C.a little; some       
已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0
已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y1时,自变量x的取值范围是(    ) A.  x <-1或x>3        B.-1<x<3
Frankly, I very much appreciate myself. Yes, I admit I’m in many respects not
Frankly, I very much appreciate myself. Yes, I admit I’m in many respects not as good as other people, but I don’t think I’m always not good. When I find what I’ve done or written is okay, I
阅读下面的材料,按要求作文。 仰望,从某种意义上说是一
阅读下面的材料,按要求作文。 仰望,从某种意义上说是一种精神上昂的生存姿态,它使生命战栗、贯注、凝神……仰望,就是漫漫黑夜中的灵魂追寻

最新题目