设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n= .
设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n= .
【考点】根与系数的关系;一元二次方程的解.
【分析】由α,β是一元二次方程x2+3x-7=0的两个根,得出α+β=-3,α2+3α=7,再把a2+4a+β变形为a2+3α+α+β,即可求出答案.
【解答】解:∵α,β是一元二次方程x2+3x-7=0的两个根,
∴α+β=-3,α2+3α=7,
∴a2+4a+β=a2+3α+α+β=7-3=4,
故答案为:4.
【点评】本题考查了一元二次方程根与系数的关系.解此类题目要利用解的定义找一个关于a、b的相等关系,再根据根与系数的关系求出ab的值,把所求的代数式化成已知条件的形式,代入数值计算即可.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=-ba ,x1•x2=c a